The Adverse Effect of Fluoride on Children's Intelligence: A Systematic Review

Helen Cheng^{*} University of London Richard Lynn^{**} University of Ulster

The authors conducted a systematic review on published studies to date to investigate the effect of fluoride exposure on children's intelligence quotient (IQ) scores. PSYCHINFO, Web of Science, MEDLINE, SCI, and the China National Knowledge Infrastructure (CNKI) search engines were employed for all documents published up to 2012, in English and in Chinese. In total, 38 studies of fluoride exposure and children's scores on IQ tests were included in this review. The weighted mean effect size (WMES) on children's IQ scores between higher and lower regions of fluoride exposure was -.46 (CI 95% -.57 to -.35; $\not\sim$.001) equivalent to 6.9 IQ points. Sensitivity analyses showed that after excluding studies that had other elements contaminations, the adverse effects of fluoride exposure on children's intelligence remained to be significant. Further, six of the studies reported significant negative correlations between fluoride in the body and intelligence. The evidence suggests that fluoride in drinking water is a serious public health hazard.

Key Words: Fluoride; Intelligence; Systematic Review; Meta-analysis.

1. Introduction

Research on the adverse effect of fluoride on children's intelligence quotient (IQ) was first reported by Ren and colleagues in a Chinese journal in 1989 (Ren, Li, & Liu, 1989). Since then, a number of studies on this topic have been published, most of these studies are in Chinese. Little is known among intelligence researchers in western countries of work in China and elsewhere on the adverse effect of fluoride

^{*} Corresponding author: Helen Cheng, Department of Psychology, University College London, London WC1E 6BT, UK. Email: h.cheng@ucl.ac.uk

^{*} University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK

in drinking water on intelligence. There is no mention of this in the recent textbooks on intelligence by Hunt (2011), Mackintosh (2011) and Sternberg and Kaufman (2011).

The reason that the possibly adverse effect of fluoride in drinking water on intelligence has not been researched in western countries is that for the last half century fluoride has been added to reservoirs to reduce dental decay. The effect of this has been that the whole population has been exposed to fluoride and possibly adverse effects cannot be assessed. Fluoride has not been added to reservoirs in China. Exposure to fluoride in some regions of China is principally caused by drinking water where the groundwater in the unconfined aquifer, which has higher fluoride concentration, is the main source of drinking water for local residents (Wang & Huang, 1995; Zhang, Hong, Zhao, Lin, Zhang, & Dong, 2003) or by the use of fluoride contaminated coal for drying grain (Liang, Ji, & Cao, 1997). In other regions wood is used for drying grain and this does not produce fluoride, or grain is not dried. Similar situations are seen in several other developing countries. For example, Davangere district in Karnataka state, India, is considered to be naturally fluoridated area according to studies conducted by the Rajeev Gandhi National Drinking Water Mission, New Delhi (Chandrashekar & Anuradhan, 2004). This makes it possible to compare the intelligence of children in regions with greater and lesser exposure to fluoride.

Previous epidemiological studies have shown the adverse effects of fluoride on brain and central nervous system causing memory deficits and may lead to neural damage, including morphological alterations in brain cells, lipid peroxide, free radical, and DNA damage, and may affect brain function, causing disruption of certain neurotransmitters and receptors in nerve cells, and increasing numerical density of the neuron volume and the nucleus-cytoplasm ratio of the neurons (Cao, Ma & Wang, 2007; Du, Wan, Cao, & Liu, 1992; Yang & Ye, 2006; Yu, Yang, Dong, Wan, Zhang, & Liu, 1996).

In a recent review by Barbier, Arreola-Mendoza, and Del Razo (2010) on the molecular mechanisms of fluoride toxicity, the authors showed that fluoride can induce oxidative stress and modulate intracellular redox homeostasis, lipid peroxidation and protein carbonyl content, as well as alter gene expression and cause apoptosis (Barbier, et al., 2010). Other studies have reported that fluoride exposure has caused delay in physical development (Xu & Huo, 2000) and retarded head development, based on measurement of the circumference (Wang,Yang, Jia, & Wang, 1996).

Hence, our objective in this paper is to review the extant studies on this topic through conducting a systematic review and meta-analysis, to investigate the magnitude of the adverse effect of fluoride exposure on children's intelligence.

2. Method

PSYCHINFO, Web of Science, MEDLINE, SCI, and the China National Knowledge Infrastructure (CNKI) search engines were examined for papers using the following keywords: fluoride and intelligence, fluoride and cognitive development, and fluoride and IQ. This produced 44 studies carried out between 1989 and 2012 on the extent of exposure to fluoride in drinking water and children's intelligence. A total of six studies were excluded (see reasons for exclusion in Appendix 1), and the remaining 38 studies were used for this review.

IQ measures and procedures

The IQ tests used in the studies include the Wechsler Intelligence Test, the Raven's Standard Progressive Matrices, and the Binet-Siman test. Many of the Chinese studies used the Chinese Standardized Raven Test, Rural Version, an adaptation of Ravens Progressive Matrices by Wang, Di and Qian (1989).

Regarding the testing environment and quality control, almost all studies mentioned that IQ tests were measured in

accordance with the guidelines of the specific measure used, testers were well trained, and children in each study were tested individually and scored based on standards suited to their grade levels. Apart from this, two studies mentioned that IQ was tested in a double-blind, or blind manner. Among the 38 studies reviewed, 28 (%74) studies used randomly selected samples. In terms of confounding factors, 32 (%84) studies mentioned that the high fluoride and reference groups were compatible in various social, economic, and environmental conditions, with no other health problems (acute or chronic diseases not related to fluoride), and were free from other sources of high fluoride intake, such as brick tea consumption.

Statistical analysis

Comprehensive meta-analysis (version 2) was used to estimate the standardised weighted mean effect size. The fixed-effect model uses Mantel-Haenszel method, and the random-effect model uses DerSimonian-Laird methods (Petitti, 1994). We tested for heterogeneity in effect sizes, and conducted sensitivity analyses excluding studies which had other element exposures in addition to fluoride (Breierova & Choudhari, 1996). Publication bias test was performed between studies, detecting the presence of publication bias and assessing its impact on the analysis (Light, Singer, & Willett, 1994).

3. Results

The characteristics of the 38 Chinese studies and studies elsewhere included are summarized in Table 1 and Table 2 respectively. This gives the reference, the region in which the study was carried out, the age of the sample, some details exposure of the samples to fluoride, the IQs or other cognitive scores of the samples exposed to higher and lower amounts of fluoride, the differences in the IQs or other cognitive scores of the samples exposed to higher and lower amounts of fluoride stamples exposed to higher and lower amounts of fluoride stamples exposed to higher and lower

	Authors	Region	Fluoride Assessment	exposure	Age range	Number		IQ Mean+SD	d	Outcome measures	Results
			Assessment	Range				Rank			
1.		Shandong Province	High fluoride & low iodine zone	Not specified	8-14	High F & low iodine area	160	64.8±20.4 ≥90=21.9% <90=78.1%	.95	Wechsler Intelligence Test	Children in a high fluoride and low iodine area had significantly
			and Low iodine only zone			Low iodine only area	169	85.0±22.3 ≥90=48.5% <90=51.5%			lower IQ scores than children in an area with low iodine only
2.	\sim \sim	Hubei Province	Well water with varying levels of	High F area 2.1-4.0 mg/L		High F area	141	≥90=24.1% <90=75.9%	-	CRT ^a	Both high and low fluoride levels had an
			fluoride	Very low F area 0.1-0.2 mg/L		Very low F area	147	≥90=27.2% <90=72.8%			effect on child intelligence: fluoride levels greater than 2.0
				Normal F area 0.5-1.0 mg/L		Normal F area	159	≥90=57.9% <90=42.1%			mg/L or less than 0.2 mg/L manifested intellectual deficits as compared to the

Table 1. Chinese studies on fluoride exposure and children's IQ

	Authors	Region	Fluoride	e exposure	Age	Number		IQ	d	Outcome	Results
			Assessment	Range	- range			Mean±SD Rank		measures	
											control group
3.	Chen, et al., 1991	Linyi, †Shanxi Province	Drinking water/ Dental	High F area 4.55 mg/L Dental	7	High F area Normal F area	-	90.03±11.44 94.15±12.06	.35	CRT-RC ^b	IQ scores of the children living in the high-fluoride
	1001	Trovince	fluorosis	Fluorosis rate: 85% Normal F	8	High F area Normal F area	-	92.01±11.76 101.33±16.22	.67		level area were significantly lower than those
				area 0.89 mg/L Dental	9	High F area Normal F area	-	98.96±14.66 99.48±11.51	.04		children living in the normal fluoride level
				Fluorosis rate: 25%	10	High F area Normal F area	- -	98.90±15.90 104.14±17.34	.32		area
					11	High F area Normal F area	-	$100.68{\pm}11.49 \\ 101.65{\pm}14.16$.08		
					12	High F area Normal F area	-	100.55 ± 12.28 107.39 ± 14.08	.52		
					13	High F area Normal F area	- -	114.40±12.57 109.63±14.22	.36		
					14	High F area Normal F area	-	106.38±10.33 114.52±9.90	.80		
					7-14	High F areas Normal F areas	320 320	100.24±14.52 104.03±14.95	.26		

	Authors	Region	Fluoride	exposure	Age	Number		IQ	d	Outcome	Results
			Assessment	Range	- range			Mean±SD Rank	-	measures	
4.	©Guo, et al., 1991	Hunan Province	Fluoride poisoning in coal burning area Blood serum	High F coal burning area fluoride content 118.1-1361.7 mg/kg; serum F level 0.15±0.05 mg/L Control area used wood; serum F level 0.10±0.07 mg/L	10-11 12-13 7-13	High F area Control area High F area Control area High F area Control area High F areas Control area	20 19 20 26 20 16 60 61	$\begin{array}{c} 77.30{\pm}8.52\\ 83.95{\pm}8.53\\ 76.73{\pm}12.87\\ 81.15{\pm}10.21\\ 76.10{\pm}11.26\\ 78.75{\pm}12.00\\ 76.7{\pm}11.04\\ 81.4{\pm}10.43\\ \end{array}$.78 .43 .23 .44	Chinese Binet	IQ scores of the children living in the coal burning area were significantly lower than those children living in the normal fluoride level area
5.	* a Lin, et al., 1991	Xinjiang Uyghur Autonomous Region	Drinking Water/ Urine/ Dental fluorosis/ Goiter	Relatively high F and low I area 0.88/ 2.6±1.1 mg/L Fluorosis rate: 70.80% Low I only areas 0.34/1.3-	7-14	Relatively high F and low iodine area Goiter rate: 54.40% Low iodine area 1 Low iodine area 2 Goiter rate: 60.93% Iodine supplement control area Goiter rate: 24.28%	33 47 39 39	71.09±6.84 79.29±12.17 77.32±11.15 95.76±17.52	2.03 1.11 1.29	CRT-RC ^b	IQ scores of the children living in the relatively high fluoride and low iodine area were significantly lower than those children living in the area with iodine supplemented

Authors	Region	Fluoride	e exposure	Age	Number		IQ	d	Outcome	Results
		Assessment	Range	- range			Mean±SD Rank	_	measures	
			1.6±0.8 mg/L Fluorosis rate: 16.00% Control area 0.34/ 1.6±1.3 mg/L							
et al.,	Guiyang, Guizhou Province	High F-Al combined toxicosis	High F area Fluorosis rate: 98.36%	≦7	High F-Al area Normal F area	18 41	80.72 ± 6.58 85.85 ± 10.72	.69	Draw a Man	IQ scores of the children living in the high fluoride
		area Dental fluorosis	Normal F area Fluorosis	8	High F-Al area Normal F area	23 48	77.17±9.87 82.96±8.32	.58		and high aluminium area were significantly
		THUS USIS	rate: not specified	9	High F-Al area Normal F area	30 26	71.80±11.62 79.31±9.59	.71		lower than those children living in the normal F-Al
				10	High F-Al area Normal F area	41 51	71.76±12.50 84.81±12.87	1.03		area in ≤7 group; high F-Al may influence the
				11	High F-Al area Normal F area	32 36	69.28 ± 8.76 81.92 ± 10.79	1.29		development of the brain during the early year,
				12	High F-Al area Normal F area	52 22	70.00±11.98 77.41±11.00	.64		and the intelligence of the children in
				≤7-12	High F-Al areas	196	72.35±11.47	.95		the endemic

	Authors	Region	Fluoride	e exposure Age	Number		IQ	d	Outcome	Results
			Assessment	Range	2		Mean±SD Rank	-	measures	
				0.5 mg/kg						combined
9.	* A Xu, et al., 1994	Shandong Province	Drinking water/ Dental	High F-I area 8-14 3.9 mg/L Fluorosis	High F-I area Goiter rate: 11.2%	30	80.31±7.55	.42	Binet-Siman	IQ scores of the children living in the high fluoride
			fluorosis/ Goiter	rate: 99% High F only area 1.8	High F only area Goiter rate: 0%	97	79.25±2.25	.81		and high iodine area, the high fluoride only
				mg/L Fluorosis rate: 95%	High F & low I area Goiter rate: 30.1%	29	69.40±20.40	.98		area, and the high fluoride and low iodine area
				High F & low I area 2.0 mg/L	Low F & high I area Goiter rate: 22.4%	32	81.25±0.92	.51		were significantly lower than children of the
				Fluorosis rate: 97% Low F &	Low F only area Goiter rate: 0.8%	21	80.21±8.27	.42		control group; there was no significant IQ
				high I area 0.5 mg/L Fluorosis	Low F-I area Goiter rate: 45.0%	27	76.42±7.21	.91		difference between the high-fluoride and
				rate: 45% Low F only area	Low I only area Goiter rate: 10.6%	62	75.17±14.16	.74		high iodine group and the high fluoride
				0.38 mg/L Fluorosis rate: 31%	Control group	32	83.83±9.10			only group, but significant differences in

Authors	Region	Fluoride	exposure Age			IQ	d	Outcome	Results
		Assessment	Range	e		Mean±SD Rank	_	measures	
				Normal F areas	224	82.78±10.54			areas appeared to be retarded
. *An, et al.,	,	Drinking water	High F area 7-16 5.2-7.6 mg/L	High F area	65	75.6±13.3	.66	Wechsler Intelligence	IQ scores of the children living in
1992	Mongolia Autonomous		Slightly high F area	Slightly high F area	56	76.1±13.9	.61	Test	the high and slightly high
	Region		2.1-3.2 mg/L Normal F area	High and slightly high F areas	121	75.9±13.6	.63		levels of fluoride areas were significantly
			0.6-1.0 mg/L	Normal F area	121	84.0±12.1			lower than children of the control group
. ©Li, et al.,	Sichuan Province	Fluoride poisoning	High F areas 12-13 4.7 mg/kg	B High F group 1	33	273.2 ± 50.2	.13	Index of Mental	Children of the two groups with
1994		in coal burning	(no dental fluorosis)	High F group 2	38	243.2±36.2	.63	Capacity	high fluoride exposure and
		area Fluoride	5.2 mg/kg (dental	High F group 3	36	240.0 ± 30.8	.77		dental fluorosis were significantly
		content in fluoride	fluorosis present)	High F groups 1-3	117	251.4 ± 42.1	.39		lower in mental capacity than
		coal cooked grain/ Dental fluorosis	31.6 mg/kg (dental fluorosis present) Normal F area	Control group	49	267.2±39.5			children of the control group and children of the high fluoride group without dental fluorosis

Authors	Region	Fluoride	e exposure	Age	Number		IQ	d	Outcome	Results
		Assessment	Range	- range			Mean±SD Rank	-	measures	
			Low F-I area 0.5 mg/L Fluorosis rate: 12% Low I only area 0.8 mg/L Fluorosis rate: 89% Normal area 0.8 mg/L Fluorosis rate: 40%							children's IQ scores were found between the high fluoride and high iodine group and the high fluoride and low iodine group
10. A Yang, et al., 1994	Huimin & Dezhou, Shandong Province	Well water/ Urine/ Dental fluorosis/ Goiter	High F-I area 2.97/ 2.08±1.03 mg/L Fluorosis rate: 35.48% Normal F-I area 0.5/ 0.82±0.56 mg/L	8-14	High F-I area Goiter rate: 3.8% Normal F-I area	30 30	76.67±7.75 81.67±11.97	.51		IQ scores of the children living in the high F & high iodine area were lower than those of the children in the reference group, but the results were not significant
11. ©Li, et al.,	Anshu & Zhijin,	Fluoride poisoning	Severe fluorosis	8-13	Severe fluorosis area	230	80.3±12.9	.82	$CRT-RC^{b}$	IQ scores of the children living in

Authors	Region	Fluoride	exposure	Age	Number		IQ	d	Outcome measures	Results
		Assessment	Range	- range			Mean±SD Rank		measures	
1995	Guizhou Province	in coal burning area Urine/ Dental Fluorosis Index (DFI)	area 2.69 mg/L DFI 3.2 Medium fluorosis area 2.01 mg/L DFI 2.5 Slight fluorosis area 1.81 mg/L DFI 0.8 Normal F area		Medium fluorosis area Slight fluorosis area All fluorosis areas Normal F area	224 227 681 226	79.7±12.7 89.7±12.7 83.24±10.04 89.9±10.4	.88 .02 .56		the severe and medium fluorosis areas were significantly lower than those of the children in the non-fluorosis area
12. Wang, et al., 1996	Shihezi, Xinjiang Uyghur Autonomous Region	Well water	High F area >1.02 mg/L DFI <0.4 High F area >1.0-8.6 mg/L Normal F area 0.58-1.0 mg/L	4-7	High F area Normal F area	147 83	95.64±14.34 101.23±15.84	.37	Wechsler Intelligence Test	IQ scores of the children in the high F area were significantly lower than those of the children in the reference area

Authors	Region	Fluoride	e exposure	Age	Number		IQ	d	Outcome measures	Results	
		Assessment	Range	- range			Mean±SD Rank		measures		
13. *Yao, et al.,	Chaoyang, Liaoning	Drinking water	11.0 mg/L	8-12	High F area	78	92.53±12.34	.64	CRT-RC ^b	IQ scores of the children living in	
1996	Province		Slightly high F area 2.0		Slightly high F area	188	94.89±11.15	.29		the high or slightly high F	
			mg/L Normal F area		High and slightly high F areas	226	94.20±11.56	.34		areas were significantly lower than those	
			1.0 mg/L		Normal F area	270	98.46±13.21			of the children in the reference area	
14. Zhao, et al.,	Fenyang & Xiaoyi,	Drinking water	High F area 4.12 mg/L	7-14	High F area	160	97.69 ± 13.00	.54	CRT-RC ^b	IQ scores of the children in the	
1996	[†] Shanxi Province		Normal F area 0.91 mg/L		Normal F area	160	105.21±14.99			high F area were significantly lower than those of the children in the reference area	
15. *Yao, et al.,	Chaoyang, Liaoning	Drinking water	High F area 2.0 mg/L	7-12	High F area	188	94.89±11.15	.44	$\mathbf{CRT}\text{-}\mathbf{RC}^{\mathrm{b}}$	IQ scores of the children in the	
1997	Province	, and a	High F area (improved for 8 years)		High F area (improved for 8 years)	326	97.83±11.27	.18		high F area were lower than those of the children in	
			0.33 mg/L Normal F area		Normal F area	314	99.98±12.21			of the children in the reference area ($p < .01$); significant	

Authors	Region	Fluoride	exposure	Age	Number		IQ	d	Outcome	Results
		Assessment	Range	- range			Mean±SD Rank		measures	
			0.4 mg/L							differences in IQ scores were also found between high F area and the improved high F area (p < .05)
16. ▲ Zhang, et al., 1998	Kuitun, Xinjiang Uyghur Autonomous Region	High F-As combined toxicosis area Drinking water	High F-As area (improved for 10 years) 0.80 mg/L High F only area (improved	4 5 6 7 8 9 10	High F-As area by age group	9 10 9 6 9 6 12	$\begin{array}{c} 94.44{\pm}7.63\\ 82.80{\pm}10.52\\ 82.18{\pm}6.98\\ 80.89{\pm}7.57\\ 80.11{\pm}7.72\\ 75.83{\pm}10.34\\ 70.92{\pm}8.58 \end{array}$.07 .41 .01 .84 .96 .85 2.03	Draw a Man	There were significant differences in IQ scores of the children between high F high As group and the controls in age 9;
			for 10 years) 0.81 mg/L Normal F-As area 0.58 mg/L	5	High F only area by age group	5 6 13 8 7 7 4	$\begin{array}{c} 112.20{\pm}13.54\\ 90.67{\pm}8.64\\ 83.62{\pm}7.29\\ 86.62{\pm}4.66\\ 88.14{\pm}12.33\\ 82.00{\pm}13.01\\ 70.66{\pm}7.50 \end{array}$	1.93 .35 .18 .07 .08 .20 2.14		and between high F high As or high F only groups and the controls in age 10 in the three areas
				$4 \\ 5 \\ 6$	Normal F-As area by age group	$5 \\ 10 \\ 7$	94.00 ± 5.33 87.20 ± 10.98 82.28 ± 7.20			

Authors	Region	Fluoride	exposure	Age	Number		IQ	d	Outcome	Results
		Assessment	Range	- range			Mean±SD Rank		measures	
				7 8 9			87.00±6.90 87.33±7.31 84.18±9.23			
				10		8	94.88 ± 15.08			
				4-10	High F-As area High F only area Normal F-As area	61 51 52	80.91 ± 10.83 85.62 ± 13.23 87.66 ± 11.04	.62 .64		
7. Lu, et al., 2000	Tianjin Municipality	Drinking water/ Urine	High F area 3.15±0.61/ 4.99±2.57 mg/L Normal F area 0.37±0.04/ 1.43±0.64 mg/L	10-12	High F area Normal F area	60 58	92.27±20.45 103.05±13.86	.63	CRT-RC ^b	IQ scores of the children living in the high fluoride area were significantly lower than those of the control group
8. A Hong, et al., 2001	Wukang & Boxing & Zouping, Shandong Province	Drinking water/ Goiter	High F & low iodine area 2.94mg/L Low F & low iodine area 0.48 mg/L High F & high iodine	8-14	High F & low I area Goiter rate: 42.86% Low F-I area Goiter rate: 32.14% High F-I area Goiter rate: 12.50%	28 28 32	68.38±19.12 75.53±6.92 79.39±6.92	1.03 .91 .43	CRT-RC ^b	The high fluoride/low iodine and the low fluoride/low iodine areas were each significantly different compared with the control

Authors	Region	Fluoride	exposure	Age	Number		IQ	d	Outcome	Results
		Assessment	Range	- range			Mean±SD Rank	_	measures	
			area 2.85 mg/L High F only area 2.90 mg/L Normal F & iodine area 0.75 mg/L		High F only area Goiter rate: 1.18% Normal F-I area Goiter rate: 3.13%	85 32	80.58±2.28 82.79±8.98	.39		(p < 0.01) and were also significantly different compared to each other (p < .01)
9. *Hou, et al., 2002	Tongxu, Henan Province	Drinking water	High F area >2.1 mg/L Normal F area <0.8 mg/L	8-12	High F area Normal F area	1346 1566	≥90=50.4% <90=49.6% ≥90=58.8% <90=41.2%	-	CRT-RC ^b	High fluoride exposure had statistically significant adverse effects on children's intelligence by rank (χ^2 =21.52, p<0.05)
20. Li, et al., 2003	Baotou, Inner Mongolia Autonomou Region	Drinking water s	Endemic versus control regions defined by	6-13	High F area Normal F area	720 236	92.07±17.12 93.78±14.30	.11	CRT-RC ^b	IQ scores of the children living in the endemic regions were lower than those

Authors	Region	Fluoride	e exposure	Age	Number		IQ	d	Outcome	Results
		Assessment	Range	- range			Mean±SD Rank		measures	
			the Chinese Geological Office							of the children living in the control regions, but there were no significant differences
. Xiang,	Sihong,	Drinking	High F area	8	High F area	11	94.09±16.50	.65	CRT-RC ^b	IQ scores of the
et al.,	Jiangsu	water/	2.47 ± 0.79	9	by age group	20	91.25 ± 14.81	.89		children in the
2003	Province	Urine				20	96.35 ± 14.04	.74		high fluoride
			4.5 mg/L	11		43	92.77±12.43	.35		group were
			Normal F	$\frac{12}{13}$		$\frac{60}{68}$	91.15±12.74 90.94±12.27	.61 .50		significantly lower than those
			area 0.36+0.15	15		08	90.94±12.27	.50		in the reference
			Range: 0.18-	8	Normal F area by age	39	103.39 ± 11.58			group
			0.76 mg/L	9	group	46	104.04±13.80			Stoup
			8,	10	0 1	31	105.45 ± 10.57			
				11		60	97.45 ± 14.60			
				12		61	99.41 ± 14.20			
				13		53	96.64 ± 10.47			
			High F area by F level	8-13						
			0.75 ± 0.1			9	99.56 ± 14.13	.06		
			1.53 ± 0.27			42	95.21±12.22	.41		

Authors	Region	Fluoride	exposure	Age	Number		IQ	d	Outcome	Results	
		Assessment	Range	- range			Mean±SD Rank		measures		
			2.46 ± 0.30			111	92.19 ± 12.98	.63			
			3.28 ± 0.25			52	89.88±11.98	.84			
			4.16 ± 0.22			8	78.38±12.68	1.70			
					High F area (total)	222	92.02±13.00 (54-126)	.64			
					Normal F area (total)	290	100.41±13.21 (60-128)				
					Total sample	512	-	-			
. *A Wang, et al.,	Datong, †Shanxi	Drinking water/	High F-As areas	8-12	High F-As area	91	108.09 ± 15.99	.28	$\mathbf{CRT}\text{-}\mathbf{RC}^{\mathrm{b}}$	IQ scores of the children in the	
2005	Pronince	,	Urine 8.31±1.85/	8.31±1.85/ 5.09 mg/L		High F only area	253	107.83±15.54	.30		high fluoride group were
			Normal F-As area		High As only area	180	102.57±16.44	.63		significantly lower than those	
			0.48±0.23/ 1.51 mg/L		Normal F area	196	112.36±14.87			in the reference area	
8. *Wang, et al.,	Yuncheng, †Shanxi	Drinking water/	High F area 5.54±3.88/	8-12	High F area	202	107.46±15.38	.27	$CRT-RC^{b}$	The IQ scores of the children in	
	Province	Urine	5.50±2.40 mg/L Normal F area 0.73±0.28/ 1.51±1.66 mg/L		Normal F area	166	111.55±15.19			the high fluoride area were significantly lower than those in the reference area	

Authors	Region	Fluoride	exposure	Age	Number		IQ	d	Outcome	Results	
		Assessment	Range	- range	-		Mean±SD Rank		measures		
24. *Fan, et al., 2007	Pucheng, Shaanxi Province	Urine	High F area 1.14-6.09 mg/L Normal F area 1.33-2.35 mg/L	7-14	High F area Normal F area	42 37	96.11±12.00 98.41±14.75	.17		IQ scores of the children in the high fluoride area were lower than those of children in the reference area	
25. * A Wang, et al., 2007	Shanyin, †Shanxi Province	Drinking water/ Urine	High F area 3.8-11.5/ 0.2-1.1 mg/L		High As only area	180	95.1±16.6	.62	CRT-C2 ^d	IQ scores of the children in the high fluoride	
			Normal F area 1.6-11/		Medium As area	91	100.6±15.6	.28		area were lower than those of children in the	
			0.4-3.9 mg/L		High F only area	253	100.5 ± 15.8	.28		reference area	
					Normal F area	196	104.8±14.7				
26. *©Li, et al., 2009		Fluoride poisoning in coal	Severe fluorosis area	8-12	Severe fluorosis area	20	93.85±18.11	.50	CRT-RC ^b	IQ scores of the children in the severe, medium,	
	Tormee	burning area Urine	2.34±1.13 mg/L Medium		Medium fluorosis area	20	93.90±17.60	.50		and slight fluorosis areas	
		Urine	fluorosis area		Slight fluorosis area	20	97.30±18.56			were significantly lower than those of children in the	

Authors	Region	Fluoride	exposure	Age	Number		IQ	d	Outcome	Results
		Assessment	Range	- range			Mean±SD Rank		measures	
			1.67±0.66 mg/L Slight fluorosis		Slight to severe fluorosis areas	60	95.02±18.17	.43		reference area
			area 1.24±0.43 mg/L Normal F area 0.96±0.52 mg/L		Normal F area	20	102.70±17.61			
27. *‡Li, et al., 2010	Henan Province	Drinking water/ Dental	High F areas 2.47±0.75 mg/L	7-10	High F area (dental fluorosis present)	347	98.73±21.07	.07	CRT-RC ^b	In the high fluoride area, there was no
		fluorosis			High F area (no dental fluorosis)	329	97.36±18.24			significant difference in IQ scores between
					Total number in the high F areas	676	-	-		children with dental fluorosis and children without dental fluorosis
28. Ding, et al., 2011	Hulunbuir, Inner	Drinking water/	High F area 0.24-2.84	7-14	Total	331	-	-	CRT-RC ^b	Urine fluoride was inversely

Authors	Region	Fluoride	e exposure Ag		Number		IQ	d	Outcome	Results
		Assessment	Range	ge			Mean±SD Rank	-	measures	
	Mongolia Autonomous Region	Urine	mg/L Normal F area 0.1-3.55 mg/L							associated with IQ in the multiple linear regression model when children's age as a covariate variable was taken into account (<i>p</i> < 0.0001)
29. [*] Xiang, et al., 2011	Sihong, Jiangsu Province	Blood sample	High F area 8-13 serum F level 0.08±0.02		Serum F level quartile 4	127	92.1±13.4	.60	CRT-RC ^b	OR (95 CI) for IQ<80 in quartiles 1& 2
	Trovince		mg/L Normal F area		Serum F level quartile 3	126	95.9±13.7	.31		group was 2.22 (1.4-3.5), <i>p</i> <.01; OR (95 CI) for
			serum F level 0.04±0.01		Serum F level quartile 3 & 4	253	94.01±13.7	.45		IQ<80 in quartile 4 group was 2.5
			mg/L		Serum F level quartiles 1& 2	259	100.1±13.4			(1.9-3.3); <i>p</i> <.001
30. *Wang & Zhu, 2012		High fluoride villages	High F area 7-12 Dental fluorosis		High F area (dental fluorosis present)	458	88.52±13.29 ≥90=46.9% <90=53.1%	.71	CRT-C2	IQ scores of the children in the high F areas were

Authors	Region	Fluoride	e exposure	Age	Number		IQ	d	Outcome	Results
		Assessment	Range	range			Mean±SD Rank		measures	
		Dental fluorosis	rate: 57.25% Normal F area Dental fluorosis rate: 13.19%		High F area (no dental fluorosis) High F areas (total)	342 800	95.99±16.57 ≥90=67.7% <90=32.7% 92.21±18.45	.15 .37		significantly lower than those of the children in the reference area; In the high F areas, there
					Normal F area	455	≥90=55.6% <90=44.4% 98.36±14.56 ≥90=62.0% <90=38.0%			were significant differences in IQ scores between children with dental fluorosis and children without dental fluorosis

Note: $F = fluoride. Al = aluminium. As = arsenic. Cre = creatinine. I = iodine. ^aCRT = Chinese Standardized Raven Test (PDBNU, 1986). ^bCRT-RC = Chinese Standardized Raven Test, rural version (Wang et al. 1989). *Papers in Chinese. Study areas had other elements condemnations (iodine, aluminium, arsenic) in addition to fluoride exposure. © Fluoride poisoning in coal burning area. ‡All study areas had high level of fluoride in drinking water. †The mean IQ of children in Shanxi province was <math>108.0 \pm 14.0$ in 2005. ^dCRT-C2 = the Raven's Standard Progressive Matrices and Colour Progressive Matrices (Raven et al. 1983) for fluid intelligence and was widely adopted in China after modifications were made for cultural, ethnic, and language differences (Chen 2002). The same sample design as in Xiang, et al. 2003. Only children whose mothers lived in the survey location while pregnant were included.

	Authors	Country	Fluorid	e exposure	Age	Number		IQ	d	Outcome	Results
			Assessment	Range	- Range			Mean±SD	-	measures	
1.	Calderon, et al., 2000	San Luis Potosi, Mexico	Drinking water/ Urine	High F area 1.2-3.0/ mg/L	6-8	Total	61		-	WISC-RM ^e RO-CFT ^f CPT ^g	Urinary fluoride correlated positively with reaction time and inversely with the scores in visuospatial organization. IQ scores were not influenced by F exposure
2.	Seraj, et al., 2004	Iran	Drinking water	High F area 2.5 mg/L Normal F area 0.4 mg/L	7-11	High F area Normal F area	41 85	87.9±11.0 98.9±12.9	.90	Raven's Standard Progressive Matrices	IQ scores of the children in the high fluoride group were significantly lower than those in the control group
3.	▲Rocha- Amador, et al., 2007	Mexico	Drinking water	High F area 9.4±0.09 mg/L Medium high F area 5.3±0.09 mg/L		High F area area Medium high F area	60 20	-	-	WISC-RM	After controlling for confounders, an inverse association was observed between

Table 2. Studies Elsewhere on fluoride exposure and children's IQ

			Relatively low F area 0.8±1.4 mg/L	,	Relatively low F area Total	52 132	-	-		F in urine and Performance and Verbal scores (β values = -13, -15.6 respectively)
4.	Trivedi, et India al., 2007	Drinking water/ Urine	High F area 5.55±0.41/ 6.13±0.67 mg/L Normal F area 2.01±0.09/ 2.30±0.28 mg/L	6-9	High F area Normal F area	89 101	91.72±1.13 104.44±1.23	10.78	Raven's Standard Progressive Matrices	IQ scores of the children in the high F group were significantly lower than those in the control group
5.	Poureslam Iran i et al., 2011	Drinking water	High F area 2.38 mg/L Normal F area 0.41 mg/L	6-9	High F area Normal F area	59 60	91.37±15.63 97.80±15.95	.41	Raven's Standard Progressive Matrices	IQ scores of the children in the high fluoride group were significantly lower than those in the control group
6.	Eswar, et India al., 2011	High fluoride villages	High F area 2.45 mg/L Normal F area 0.29 mg/L	12-14	High F area Normal F area	68 65	86.3±12.8 88.8±15.3	.17	Raven's Standard Progressive Matrices	No significant difference in IQ scores of the children in the high F and the normal fluoride areas

7.	AShivapra kash, et al., 2011	India	Drinking water/ Dental fluorosis	High F area 2.5-5.5 mg/L (dental fluorosis present) Normal F area <0.5 mg/L (no dental fluorosis)	7-11	High F area Normal F area	80 80	66.63±18.09 76.36±20.84	.50	Raven's Coloured Progressive Matrices	IQ scores of the children with dental fluorosis was significantly lower than the scores of the children without dental fluorosis
8.	ASaxena, et al., 2012	India	Drinking water/ Urine	High F areas > 4.5 mg/L 3.1-4.5 mg/L 1.5-3.0 mg/L Normal F area <1.5mg/L	12	High F areas Group 1 Group 2 Group 3 Normal F area Group 4	38 43 39 50	-	-	Raven's Coloured Progressive Matrices	A statistically significant difference was observed between IQ grades and water and between IQ grades and the urinary fluoride levels. Reduction in intelligence was observed with an increased water fluoride level and urinary fluoride level ($P < 0.001$)

Note: ^eWechsler Intelligence Scale for Children Revisited version for Mexico. ^fRey Osterreith-Complex Figure Test. ^gContinuos Performance Test. ^aStudy areas had other elements condemnations (iodine, aluminium, arsenic) in addition to fluoride exposure.

Study name Statistics for each study Std diff in means and 95% CI Std diff Lower Upper Relativ e in means limit limit p-Value weight Ren, et al., 1989 -0.944 -1.172 -0.716 0.000 3.56 Chen. et al., 1991 -0.257 -0.413 -0.101 0.001 3.95 Guo. et al., 1991 -0.437 -0.797 -0.076 0.018 2.79 Lin, et al., 1991 -1.799 -2.348 -1.250 0.000 1.89 Sun. et al., 1991 -0.950 -1.152 -0.747 0.000 3.71 An, et al., 1992 -0.629 -0.887 -0.371 0.000 3.38 Li, et al., 1994 -0.382 -0.723 -0.042 0.028 2.90 Xu, et al., 1994 -0.934 -1.350 -0.519 0.000 2.49 2.03 Yang, et al., 1994 -0.496 -1.010 0.018 0.059 Li, et al., 1995 -0.518 -0.671 -0.366 0.000 3.97 Wang, et al., 1996 -0.375 -0.647 -0.104 0.007 3.31 Yao, et al., 1996 -0.343 -0.514 -0.172 0.000 3.88 Zhao, et al., 1996 -0.536 -0.759 -0.313 0.000 3.59 Yao, et al., 1997 -0.430 -0.613 -0.248 0.000 3.81 Zhang, et al., 1998 -0.168 -0.555 0.219 0.396 2.64 Lu. et al., 2000 -0.615 -0.984 -0.246 0.001 2.74 Hong, et al., 2001 -0.437 -0.848 -0.027 0.037 2.52 Li, et al., 2003 -0.104 -0.251 0.043 0.167 3.99 Xiang, et al., 2003 -0.640 -0.819 -0.460 0.000 3.83 Seraj, et al., 2004 -0.896 -1.273 -0.518 0.000 2.70 Wang, et al., 2005 -0.297 -0.485 -0.110 0.002 3.79 Wang, et al., 2006 -0.267 -0.474 -0.061 0.011 3.68 Fan, et al., 2007 -0.172 -0.615 0.271 0.446 2.36 Wang, et al., 2007 -0.280 -0.468 -0.093 0.003 3.79 Li, et al., 2009 -0.426 -0.936 0.085 0.102 2.05 Li, et al., 2010 0.069 -0.081 0.220 0.367 3.97 Eswar, et al., 2011 -0.178 -0.518 0.163 0.307 2.90 Poureslami, et al., 2011 -0.407 -0.770 -0.044 0.028 2.77 Shivaprakash, et al., 2011 -0.499 -0.813 -0.184 0.002 3.05 Xiang, et al., 2011 -0.450 -0.625 -0.275 0.000 3.85 Wang, et al., 2012 -0.359 -0.475 -0.243 0.000 4.12 -0.463 -0.563 -0.363 0.000 -1.00 -0.50 0.00 0.50 1.00 Favours A Favours B

Meta Analysis

Meta Analysis

Figure 1. Random-effect of standardised weighted mean effect size and confidence intervals of children's IQ scores associated with fluoride exposure

where these can be calculated (in five studies this is not possible because standard deviations are not given), the IQ tests used in the study, and a summary of the results.

All the studies except one reported that children who lived in regions with greater fluoride exposure had significantly lower IQs than those who lived in regions with less fluoride exposure. The range of ds was from .07 to 10.8. The study with positive association indicated that the IQ scores of children who had dental fluorosis were slightly higher than children who had no dental fluorosis (d = .07), but the difference was not significant (Li, Hou, Yu, Yuan, Liu, Zhang, et al., 2010). It should be noted that in another study (Trivedi, Verma, Chinoy, Patel, & Sathawara, 2007), the SDs are unusually small (1.23 for normal and 1.13 for high fluoride areas), thus the effect size is unusually large (d=10.8). When this study was excluded, the range of ds was from 0.07 to 2.03.

Among the studies reviewed, two studies reported that there was a trend for higher exposure levels to have stronger IQ-reducing effects (Xiang, et al., 2011; Saxena, et al., 2012). Table 1 also shows that there appears to be some interaction effects of high fluoride and low iodine on children's IQ scores (Hong, et al., 2001; Lin, et al., 1991; Xu, et al., 1994).

We used inverse variance weighting and estimated the weighted mean effect size (WMES). The Mantel-Haenszel fixed effect model estimated that the WMES (d) on the 32 studies on which this can be calculated between the IQs of children in greater and lesser fluoride exposed regions was - 0.41 (CI 95% -0.37 to -0.45; I² 93.78%; p<.001) equivalent to 6.2 IQ points; and the DerSimonian-Laird random effect model showed that the WMES was -0.62 (CI 95% -.78 to -.45; p<.001) equivalent to 9.3 IQ points. When the Trivedi, et al. (2007) study was excluded from the meta-analysis, the fixed effect model estimated that the WMES was -0.40 (CI 95% -.44 to -.36; I² 82.3%; p<.001) equivalent to 6.0 IQ points; and

therandom effect model estimated that the WMES was -.46 (CI 95% -.57 to -.35; p<.001) equivalent to 6.9 IQ points. Detailed results for these 31 studies are shown in Figure 1. Because of the unusually small SDs resulted with an unusually large effect size of the Trivedi, et al. (2007) study, this study was excluded in the following analyses.

Sensitivity analyses

Because of the lack of homogeneity of variances among the studies, we used the random effect model for sensitivity analysis on the 31 studies in China and elsewhere. Results are shown in Table 3. First, we excluded the four studies from fluoride poisoning coal-burning areas; second, we further excluded seven studies that had other pollutions (iodine, aluminium, arsenic) apart from fluoride exposure. The results of these analyses showed a 5-7 point difference in IQ scores between the children with fluoride exposure and those in control groups. These results were similar to the ones obtained before the exclusions, indicating the consistency of these findings.

In addition to these studies comparing groups exposed to different amounts of fluoride, six of the studies also reported correlations between fluoride concentrations in the body and intelligence among individuals. The results of these are summarized in Table 4. All of the correlations were statistically significant and negative, showing that individuals with higher fluoride concentrations had lower IQs.

Further, two studies (Rocha-Amador et al., 2007; Ding, et al., 2011) also reported the inverse association between fluoride in body and children's intelligence using multiple linear regression models. In the study of Rocha-Amador and colleagues (2007), the association between amounts of fluoride in urine and individuals' IQ scores was $\beta = -16.9$; and in Ding, et al. (2011) study, it was estimated that "Each increase in 1 mg/L of urine fluoride associated with 0.59-point decrease in IQ (p=0.0226)" (p1942).

Table 3. Sensitivity analyses of pooled standardised weighted mean effect size (WMES) using theDerSimonian-Laird methods

Random-effect Model	Excluded Studies		n	WMES (95% CI)	IQ Point	<i>P</i> -value
Exclude coal-burning area studies	Guo et al., 1991; Li et al., 1994; Li et al., 1995; Li et al., 2009	27		-0.47 (-0.58, -0.36)	7.05	<.001
Exclude coal-burning area studies, and studies with other contaminations (iodine, aluminium, arsenic)	Guo et al., 1991; Li et al., 1994; Li et al., 1995; Li et al., 2009; Ren et al., 1989; Lin et al., 1991; Sun et al., 1991; Xu et al., 1994; Yang et al., 1994; Zhang et al., 1998; Hong et al., 2001	20		-0.37 (-0.46, -0.27)	5.55	<.001

Reference	Ν	Assessment	r	
Guo et al., 1991	242	Blood	205*	
Lu et al., 2000	118	Urine	320***	
Xiang et al., 2003	512	Urine	174**	
Wang et al., 2006	368	Urine	119*	
Li et al., 2009	140	Urine	476**	
Saxena, et al., 2012	170	Water Urine	534*** 542***	

Table 4. Correlations between fluoride concentrations and IQs among individuals

*, ** and *** denote statistical significance at *p*<.05, *p*<.01, and *p*<.001, respectively.

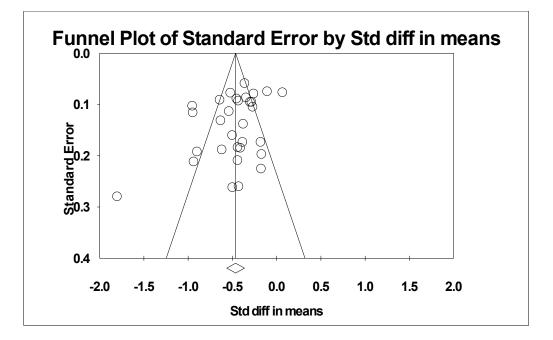


Figure 2. Funnel plot of the present study

Publication bias

Figure 2 is the funnel plot of the study. This is a plot of a measure of study size (usually standard error or precision) on the vertical axis as a function of effect size on the horizontal axis. The graph shows that the studies have distributed fairly symmetrically, except one, which shows some bias, reflecting the fact that smaller studies are more likely to be published if they have larger than average effects, which makes them more likely to meet the criterion for statistical significance.

4. Discussion

The consistency of relationship between the lower IQs of children in greater than in lesser fluoride exposed regions in all thirty-seven studies summarized in Tables 1 and 2, and the negative correlations between fluoride concentrations and IQs among individuals summarized in Table 3, establish a strong case that fluoride in drinking water impairs intelligence. The best estimate of the magnitude of this impairment is 6.9 IQ points. This is a substantial impairment and suggests that fluoride in drinking water might be a serious public health hazard in western nations where it is added to reservoirs.

The findings of the present review are in line with previous human and animal studies, which reported that fluoride exerts its adverse effects by impairing thyroid gland function and the development of the brain and central nervous system. It has been reported that fluoride impairs thyroid gland function in humans by Bürgi, Siebenhüner and Miloni (1984) and in pregnant women this can lead to children with lower IQ scores (Klein, Sargent, Larsen et al., 2001). Animal studies have reported that fluoride has adverse effects on the development of the central nervous system of the rat (Basha & Madhusudhan, 2010; Bera, Sabatini, Auteri, Flace et al., 2007; Chen & Chen, 2002). An adverse effect of fluoride on thyroid function of the rat has been reported by Basha, Rai and Begum (2011). A damaging effect of fluoride on the developmnet of the brain in mice has been reported by Bouaziz, Amara, Essefi, Croute and Zeghal (2010). Iodine is essential for the synthesis of the thyroid hormones triiodothyronine and thyroxine, which affect a number of physiological processes, including growth and development, and metabolism. Iodine-deficiency can cause decreased production of thyroid hormones, which adversely affects not only brain development, but also its functions such as attention, learning and memory (Wang, Ge, Ning, & Niu, 2009).

Other animal studies have shown that the rate and degree of DNA damage to brain cells in rats exposed to high fluoride, low iodine and their combined interaction were markedly higher (Wang, Ge, Ning, & Niu, 2009). These findings may partly explain the significant lower IQ scores of the children in the low iodine and high fluoride areas compared with the children in areas with high fluoride but sufficient iodine (Hong, et al., 2001; Xu, et al., 1994).

Although the mechanism underlying the adverse effect of fluoride on children's intelligence is unclear, this review shows that fluoride in drinking water has significant adverse effect on children's intelligence and cognitive development. This effect remains to be significant after eliminating the effects of other harmful trace elements (iodine, aluminium, and arsenic), and publication bias analysis shows that the studies reviewed are relatively free from publication bias. Future studies, especially at individual level, are required to further ascertain the associations between fluoride exposure and children's intelligence.

References

- An, J.-A., Mei, S.-Z., & Liu, A.-P.
 - (1992) Effect of high level of fluoride on children's intelligence. *Chinese* Journal of Control of Endemic Diseases, 7, 93-94 (in Chinese).
- Barbier, O., Arreola-Mendoza, L., & Del Razo, L. M.
 - (2010) Molecular mechanisms of fluoride toxicity. *Chemico-Biological* Interactions, 188, 319-333.
- Basha, P. & Madhusudhan, N.
 - (2010) Pre and post natal exposure of fluoride induced oxidative macromolecular alterations in developing central nervous system of rat and amelioration by antioxidants. *Neurochemical Research*, *35*, 1017-1028.
- Basha, P., Rai, P., & Begum, S.
 - (2011) Fluoride toxicity and status of serum thyroid hormones, brain histopathology, and learning memory in rats: A multigenerational assessment. *Biological Trace Element Research*, 144, 1083-1094.
- Bera, I., Sabatini, R., Auteri, P., Flace, P., Sisto, G., Montagnani, M., Potenza, M. A., Marasciulo, F. L., Carratu, M. R., Coluccia, A., Borracci, P., Tarullo, A., & Cagiano, R.
 - (2007) Neurofunctional effects of developmental sodium fluoride exposure in rats. *European Review for Medical and Pharmacological Sciences*, 11, 211-224.
- Bouaziz, H., Amara, I. B., Essefi, M., Croute, F., & Zeghal, N.
 - (2010) Fluoride-induced brain damages in suckling mice. *Pesticide* Biochemistry and Physiology, 96, 24-29.
- Breierova, L. & Choudhari, M.
 - (1996) An introduction to sensitivity analysis (pp. 41-107). Massachusetts: Mass. Institute of Technology.
- Bürgi, H., Siebenhüner, L., & Miloni, E.
 - (1984) Fluorine and thyroid gland function: A review of the literature. Journal of Molecular Medicine, 62, 564-569.
- Calderon, J., Machado, B., Navarro, M., Carrizales, L., Ortiz, M. D., Diaz-Barriga, F.
 - (2000) Influence of fluoride exposure on reaction time and visuospatial organization in children. *Epidemiology*, *11*(4), S153.
- Cao, C.-F., Ma, Q.-H., & Wang, J.-D.
 - (2007) Research development on fluoride neurotoxicity. Journal of Animal Science and Veterinary, 26, 38-39 (in Chinese).
- Chandrashekar, J. & Anuradhan, K. P.
 - (2004) Prevalence of dental fluorosis in rural areas of Davangere, India. International Dental Journal, 54, 235-239.
- Chen, J. & Chen, X.-M.
 - (2002) Research on damage to the DNA of brain cells in rats caused by fluoride and the antagonism of fluoride with selenium and zinc.

Chinese Journal of Public Health Management, 18, 774-775 (in Chinese).

- Chen, Y., Han, F., Zhoua, Z., Zhang, H., Jiao, X., & Zhang, S.
 - (1991) Research on the intellectual development of children in high fluoride areas. *Chinese Journal of Control of Endemic Diseases, 6,* 99-100 (in Chinese).
- Comprehensive Meta Analysis (version 2) BIOSTAT INC.
- Ding, Y.-P., Gao, Y.-H., Sun, H.-X., Nan, H.-P., Wang, W., Ji, X.-H., et al.
 - (2011) The relationships between low levels of urine fluoride on children's intelligence, dental fluorosis in endemic fluorosis areas in hulunbuir, inner Mongolia, China. *Journal of Hazardous Materials, 186*, 1942-1946.
- Du, L., Wan, C.-W., Cao, X.-M., & Liu, J.-L.
 - (1992) The effect of fluorine on the developing human brain. *Chinese Journal of Pathology*, 21, 218-220.
- Eswar, P., Nagesh, L., & Devaraj, C. G.
- (2011) Intelligence quotients of 12-14 year old school children in a high and a low fluoride village in india. *Fluoride*, 44, 168-172.
- Fan, Z.-X., Dai, H.-X., Bai, A.-M., et al.
 - (2007) Effect of high fluoride exposure on children's intelligence. Journal of Environment and Health, 24, 802-803 (in Chinese).
- Gao, Q., Liu, Y.-J., & Guan, Z.-Z.
 - (2008) Oxidative stress might be a mechanism connected with the decreased α 7 nicotinic receptor influenced by high-concentration of fluoride in SH-SY5Y neuroblastoma cells. *Toxicology in Vitro*, 22, 837-843.
- Guo, X., Wang, R., Cheng, C., Wei, W., Tang, L. & Wang, Q.
 - (1991) A preliminary investigation of the IQs of 7-13 year-old children from an area with coal burning-related fluoride poisoning. *Chinese Journal of Endemiology*, 10, 98-100 (in Chinese).
- Hong, F., Cao, Y., Yang, D., & Wang, H.
 - (2001) Research on the effects of fluoride on child intellectual development under different environmental conditions. *Chinese Primary Health Care*, *15*, 56-57 (in Chinese).
- Hou, G.-Q., Chen, H.-M. & Zhu, X.-B.
 - (2002) Research on the effects of high fluoride exposure on children's intelligence. *Henan Medical Information*, *17*, 87 (in Chinese).
- Hunt, E.
 - (2011) Human Intelligence. Cambridge: Cambridge University Press.
- Klein, R. Z., Sargent, J. D., Larsen, P. R., Waisbren, S. E., Haddow, J. E. & Mitchell, M. L.
 - (2001) Relation of severity of maternal hypothyroidism to cognitive development of offspring. *Journal of Medical Screen, 8*,18-20.

The Adverse Effect of Fluoride on Children's Intelligence

- Li, F.-H., Chen, X., Huang, R.-J. & Xie, Y.-P.
 - (2009) Intelligence impact of children with endemic fluorosis caused by fluoride from coal burning. *Journal of Environment and Health, 26,* 338-340 (in Chinese).
- Li, X.-H., Hou, G.-Q., Yu, B., Yuan, C.-S., Liu, Y., & Zhang, L.
 - (2010) Investigation and analysis of children's intelligence and dental fluorosis in high fluoride area. *Journal of Medicine and Pest Control, 26, 230-231* (in Chinese).
- Li, X.-S., Zhi, J.-L., & Gao, R.-O.
 - (1995) Effect of fluoride exposure on intelligence in children. *Fluoride*, 28, 189-192.
- Li, Y.-P., Jing, X.-Y., Chen, D., Lin, L., & Wang, Z.-J.
 - (2003) Effects of endemic fluoride poisoning on the intellectual development of children in Baotou. *Chinese Journal of Public Health Management, 19,* 337-338 (in Chinese).
- Li, Y., Li, X. & Wei, S.
 - (1994) Effect of excessive fluoride intake on mental work capacity of children . *Journal of West China University of Medical Sciences*, 25,188-91 (in Chinese).
- Liang, C.-K, Ji, R, Cao, S.-R.
 - (1997) Épidemiological analysis of endemic fluorosis in China. Environmental Carcinogenesis and Ecotoxicology Reviews, 15,123-138.
- Light, R. J., Singer, J. D., & Willett, J. B.
 - (1994) The visual presentation and interpretation of meta-analyses. In H. Cooper & L. V. Hedges (Eds.), *Handbook of research synthesis* (pp. 439-453). New York: Russell Sage.
- Lin, F.-F., Ai, H.-T, Zhao, H.-X., Lin, J., Jiang, J.-Y., Ma, L., & Maimaiti
- (1991) High fluoride and low iodine environment and subclinical cretinism in Xinjiang. *Endemic Disease Bulletin, 6*, 62-67 (in Chinese).
- Lu, Y., Sun, Z.-R., Wu, L.-N., Wang, X., Lu, W., & Liu, S. S.
 - (2000) Effect of high-fluoride water on intelligence in children. *Fluoride*, *33*, 74-78.

Mackintosh, N. J.

- (2011) *IQ and Human Intelligence.* Second Edition. Oxford, UK: Oxford University Press.
- Petitti, D. B.
- (1994) Meta-analysis, decision analysis and cost-effectiveness analysis: Methods for quantitative synthesis in medicine (pp. 90-123). New York: Oxford University Press.

Poureslami, H. R., Horri, A., Khoramian, S., & Garrusi, B.

(2011) Intelligence quotient of 7 to 9 year-old children from an area with high fluoride in drinking water. *Journal of Dentistry and Oral Hygiene*, 3(4), 61-64,.

Qin, L., Huo, S., Chen, R., Chang, Y., & Zhao, M.

- (1990) Using the raven's standard progressive matrices to determine the effects of the level of fluoride in drinking water on the intellectual ability of school-age children. *Journal of Control of Endemic Diseases, 5*, 203-204. (in Chinese).
- Ren, D., Li, K., & Liu, D.
 - (1989) A study of the intellectual ability of 8-14 year-old children in high fluoride, low iodine areas. *Chinese Journal of Control of Endemic Diseases* 1989; 4, 251 (in Chinese).
- Rocha-Amador, D., Navarro, M. E., Carrizales, L., Morales, R., & Calderon, J.
 - (2007) Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. *Cadernos De Saude Publica, 23*, S579-S587.
- Saxena, S., Sahay, A., Goel, P.
 - (2012) Effect of fluoride exposure on the intelligence of school children in Madhya Pradesh, India. *Journal of Neuroscience in Rural Practice*, 3,144-149.
- Seraj, B., Shahrabi, M., Falahzade, M., et al.
 - (2007) Effect of High Fluoride Concentration in Drinking Water on Children's Intelligence. *Journal of Dental Medicine*, 19, 80-86.
- Shivaprakash, P. K., Ohri, K., & Noorani, H.
 - (2011) Relation between dental fluorosis and intelligence quotient in school children of bagalkot district. *Journal of the Indian Society of Pedodontics and Preventive Dentistry*, 29, 117-120.
- Sternberg, R. J. & Kaufman, S. B.
- (2011) *Cambridge Handbook of Intelligence.* Cambridge, UK: Cambridge University Press.
- Sun, M.-M., Li, S.-G., Wang, Y.-F., & Li, F.-C.
 - (1991) Measurement of intelligence by drawing test among the children in the endemic area of Al-F combined foxieosis in Guizhou. *Journal of Guiyang Medical College, 16,* 204-206 (in Chinese).
- Wang, D., Di, M., & Qian, M.
 - (1989) Chinese Standardized Raven Test, Rural Version. Tianjin: China.
- Wang, J., Ge, Y., Ning, H., Niu, R.
 - (2009) DNA damage in brain and thyroid gland cells due to high fluoride and low iodine. In V. R. Preedy, G. N. Burrow, & R. Watson (Eds.), *Comprehensive handbook of iodine: Nutritional, biochemical, pathological and therapeutic aspects* (pp. 643-649). San Diego: Academic Press.
- Wang, L.-F., & Huang, J.-Z.
 - (1995) Outline of control practice of endemic fluorosis in China. Social Science & Medicine, 41, 1191-1195.
- Wang, G., Yang, D., Jia, F., & Wang, H.
 - (1996) A study of the IQ levels of four- to seven-year-old children in high fluoride areas. *Endemic Diseases Bulletin* (China), 11, 60-62 (in Chinese).

- Wang, S.-X., Wang, Z.-H., & Cheng, X-T
 - (2005) Investigation and evaluation on intelligence and growth of children in endemic fluorosis and arsenium areas. *Chinese Journal of Endemiology, 24,* 179-182 (in Chinese).
- Wang, S.-X., Wang, Z.-H., Cheng, X.-T., Li, J., Sang, Z.-P., & Zhang, X.-D.
 - (2007) Arsenic and fluoride exposure in drinking water: Children's IQ and growth in Shanyin county, Shanxi province, China. *Environmental Health Perspectives*, 115, 643-647 (in Chinese).
- Wang, S. & Zhu, X.-H.
 - (2012) Investigation on intelligence of children in endemic fluorosis areas. *Chinese Journal of Control of Endemic Diseases, 27,* 67-68 (in Chinese).
- Wang, X.-H., Wang, L.-F., Hu, P.-Y., Guo, X.-W., Luo, X.-H.
 - (2001) Effects of high iodine and high fluorine on children's intelligence and thyroid function. *Chinese Journal of Endemiology*, 20, 288-290 (in Chinese).
- Wang, Z.-H., Wang, S.-X, Zhang, X.-D, Li, J., Cheng, X.-T., & Wu, Z.-M.
- (2006) Investigation of children's growth and development under longterm fluoride exposure. *Chinese Journal of Control of Endemic Diseases*, 21, 239-241 (in Chinese).
- Xiang, Q., Liang, Y., Chen, L., Wang, C., Chen, B., & Chen, X.,
- (2003) Effect of fluoride in drinking water on children's intelligence. *Fluoride*, *36*, 84-94.
- Xiang, Q.-Y., Liang, Y.-X., Chen, B.-H., & Chen, L.-S.
 - (2011) Analysis of children's serum fluoride levels in relation to intelligence scores in a high and low fluoride water village in china. *Fluoride*, *44*, 191-194.
- Xu, Y.-L., Lu, C.-S. & Zhang, X.-N.
 - (1994) Effect of fluoride on children's intelligence. Endemic Disease Bulletin, 9, 83-84 (in Chinese).
- Yang, C.-G. & Ye, F.
 - (2006) The effects of high fluoride exposure on the central nervous system. *Chinese Journal of Endemiology*, *25*, 352-353 (in Chinese).
- Yang, Y., Wang, X., Guo, X. & Hu, P.
 - (1994) The effects of high levels of fluoride and iodine on child intellectual ability and the metabolism of fluoride and iodine. *Chinese Journal of Epidemiology*, 15, 296-298 (in Chinese).
- Yao, L.-M., Zhou, J.-L., Wang, X.-L., Cui, Q.-C., & Lin, F.-Y.
- (1996) Analysis of TSH levels and intelligence of children residing in high fluorosis areas. *Literature and Information on Preventive Medicine*, 2, 26-27 (in Chinese).
- Xu, N.-Y. & Huo, J.-X.
- (2000) The effects of fluoride exposure on children and adolescents' physical development. *Journal of Baotou Medical College, 16,* 92-95 (in Chinese).

- Yu, Y.-N., Yang, W.-X., Dong, Z., Wan, C.-W., Zhang, J.-T., & Liu, J.-L.
 - (1996) Neurotransmitter and receptor and changes in the changes of foetuses from areas of endemic fluorosis. *Chinese Journal of Endemiology*, 15, 257-259 (in Chinese).
- Zhang, B., Hong, M., Zhao, Y.-S., Lin, X.-Y., Zhang, X.-L., & Dong, J.
 - (2003) Distribution and risk assessment of fluoride in drinking water in the West Plain region of Jilin Province, China. *Environmental Geochemistry and Health*, 25, 421-431.
- Zhang, J.-W., Yao, H., & Chen, Y.
 - (1998) Effect of high level of fluoride and arsenium on children's intelligence. *Chinese Journal of Public Health*, 17, 119 (in Chinese).
- Zhao, L.-B., Liang, G.-H., Zhang, D.-N., & Wu, X.-R.
 - (1996) Effect of a high fluoride water supply on children's intelligence. *Fluoride*, *29*, 190-192.

Authors	Region	Age	Fluori	de exposure	Numl	ber	IQ	Outcome	Reasons for exclusion
	Country	range	Assessment	Range	_			measures	
1. Xu & Ho, 1991	Ningxia Hui Autonomous Region	7-17	Drinking water	High F area 3.99 mg/L Normal F area	High F area	395	74.43	Chinese Binet	Missing SDs
	China			0.73 mg/L	Normal F area	608	74.39		
2. Xu,et al., 1993	Ningxia Hui Autonomous	7-17	Drinking water	High F area 3.99 mg/L Normal F area	High F area	395	74.43	Chinese Binet	Duplicate the study of Xu & Ho, 1991
	Region			0.73 mg/L	Normal F area	608	74.39		
3. Liu, S., et al., 2000	Tianjin Municipality China	10-12	Drinking water	High F area 3.15±0.61/ mg/L	High F area	60	92.27±20.45	CRT-RC ^b	Duplicate the study of Lu, et al., 2000
	China			Normal F area 0.37±0.04 mg/L	Normal F area	58	103.05±13.86		
4. Wang, et al., 2001	Shandong Province China	8-14	Well water/ Urine	High F area 2.97/2.08±1.03 mg/L Normal F area	High F & high iodine area	30 a	76.67±7.75	Chinese Comparative Intelligence Test	Duplicate the study of Yang et al., 1994

Appendix 1. Excluded studies and references

				0.5/0.82±0.56 mg/L	Normal F & iodine area	30	81.67±11.97		
5. Wang, et al. , 2005	Guizhou Province China	7-12	Urine	1.35±0.46 mg/L Normal F area		144	-	Raven Standard Theoretical Intelligence	Contradicting statements (F level was higher in the
				1.61 ± 0.47 mg/L	Normal F zone	35			control zone)
6. Poureslami, et al., 2011	Iran	6-9	Drinking water	High F area 2.38 mg/L Normal F area	High F area Normal F	59 60	91.37 ± 15.63 97.80 ± 15.95	Raven's Standard	Duplicate the study of Poureslami, et al.,
				0.41 mg/L	normal F area	00	97.60±15.95	Progressive Matrices	2011

References

- Liu, S., Lu, Y., Sun, Z., Wu, L., Lu, W., & Wang, X.
- (2000) Report on the intellectual ability of children living in high-fluoride water areas. *Journal of Control of Endemic Diseases*, 15, 231-232 (in Chinese).
- Poureslami, H. R., Horri, A., & Garrusi, B.
 - (2011) A comparative study of the IQ of children age 7-9 in a high and a low fluoride water city in iran. *Fluoride*, 44(3), 163-167.
- Wang, S.-Y., Zhang, H.-X., Fan, W., Fang, S.-J., & Kang, P.-P.
 - (2005) The effects of endemic fluoride poisoning caused by coal burning on the physical development and intelligence of children. *Journal of Applied Clinical Pediatrics*, 20, 897-899 (in Chinese).
- Wang, X.-H., Wang, L.-F., Hu, P.-Y, Guo, X.-W, Luo, X.-H.
 - (2001) Effects of high iodine and high fluorine on children's intelligence and thyroid function. *Chinese Journal of Endemiology*, 20, 288-290 (in Chinese).
- Xu, J.-H & Hu, X.-Z.
 - (1991) The analysis of the effects of high fluoride exposure to children's physical and intellectual development. *Journal of Ningxia Medical College, 13,* 19-22 (in Chinese).
- Xu, J.-H & Hu, X.-Z.
- (1993) The analysis of the effects of high fluoride exposure to children's physical and intellectual development. *Endemic Disease Bulletin, 8,* 92-95 (in Chinese).